
# How to select the right viral vector for your unique therapy

Key considerations, trends, and manufacturing factors to help guide your decision

## Key factors in vector selection

Choosing the best viral vector for your unique cell or gene therapy is critical, as it can directly impact the safety and efficacy of the final product. There are many different factors to consider as each vector type comes with its own unique set of characteristics, applications, and limitations.

Some considerations when evaluating vector options include:

|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <b>Target cell:</b> Vector must be capable of targeting the specific cell/tissue type required for therapy                  |  <b>Packaging capacity:</b> Vector must have sufficient capacity to transport the genetic material required for treatment                                     |
|  <b>Transduction efficiency:</b> Vector must be able to deliver the therapeutic genetic material to target cells efficiently |  <b>Duration of gene expression:</b> Some applications require vectors to maintain long-term expression while transient expression may suffice in other cases |
|  <b>Safety:</b> Vector should pose minimal risk of triggering an unwanted immune response and an acceptable toxicity profile |                                                                                                                                                                                                                                                  |

## Trends in viral vectors

Adeno-associated viruses (AAV) are generally the most widely used vector in cell and gene therapy applications as they are considered to be both safe and efficient. Other commonly used options include adenoviruses (AdV) and lentiviruses (LV). However, novel vector types such as herpes simplex virus (HSV), retrovirus (RV), modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), and others are gaining traction for a variety of clinical applications.

### Overview of viral vector types for gene therapy clinical trials

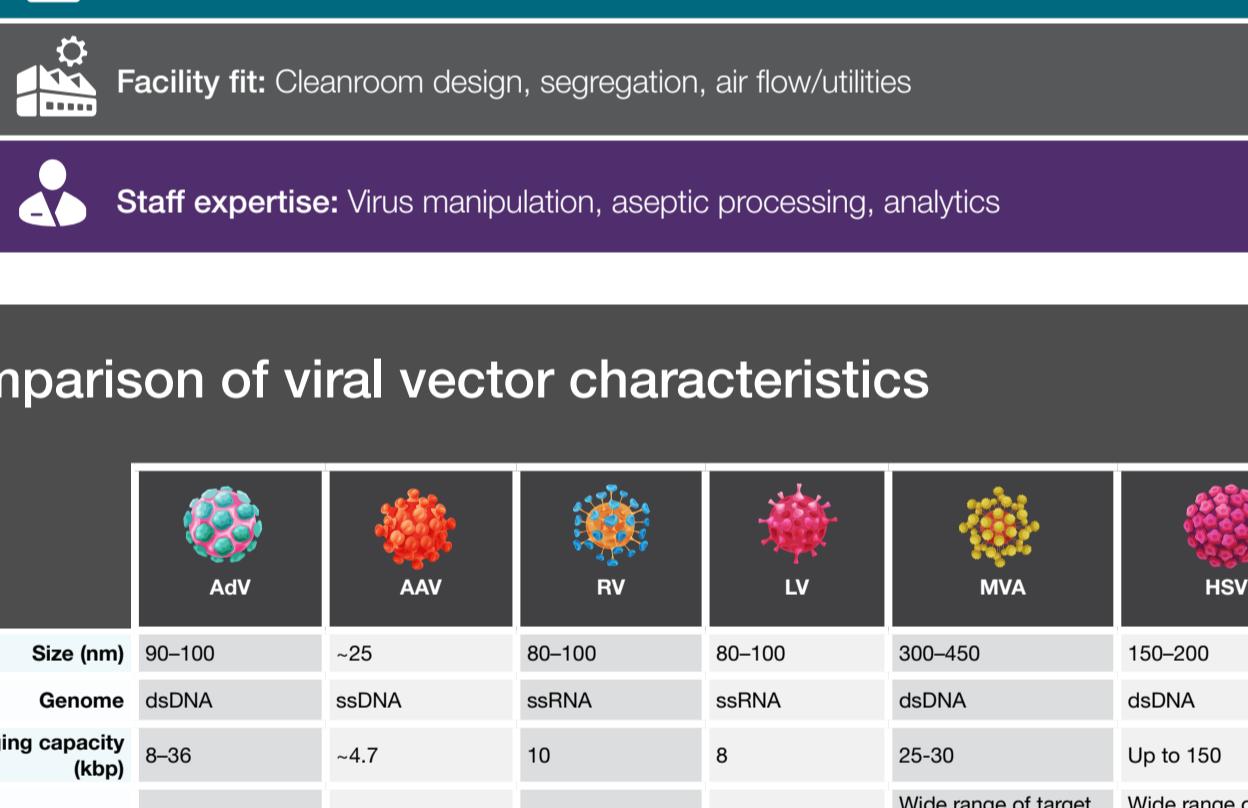



Figure 1. Viral vector snapshot.\*

\* Zhao Z, Anselmo AC, Mitrugoti S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med. 2021;7(1):e10258. Published 2021 Oct 20. doi:10.1002/btm2.10258

## Manufacturing considerations

Working with complex vectors requires special considerations for the manufacturing environment to ensure aseptic conditions and avoid cross-contamination. The following factors should be assessed when establishing your viral vector manufacturing strategy with non-traditional vector types.

|          |                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b> |  <b>Safety:</b> Requirements for personnel, product, facility              |
| <b>2</b> |  <b>Process:</b> Equipment, cleaning protocol, suite layout, scalability   |
| <b>3</b> |  <b>Facility fit:</b> Cleanroom design, segregation, air flow/utilities    |
| <b>4</b> |  <b>Staff expertise:</b> Virus manipulation, aseptic processing, analytics |

## Comparison of viral vector characteristics

|                                 | AdV                                            | AAV                                                                                      | RV                               | LV                            | MVA                                                    | HSV                                                    |
|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| <b>Size (nm)</b>                | 90–100                                         | ~25                                                                                      | 80–100                           | 80–100                        | 300–450                                                | 150–200                                                |
| <b>Genome</b>                   | dsDNA                                          | ssDNA                                                                                    | ssRNA                            | ssRNA                         | dsDNA                                                  | dsDNA                                                  |
| <b>Packaging capacity (kbp)</b> | 8–36                                           | ~4.7                                                                                     | 10                               | 8                             | 25–30                                                  | Up to 150                                              |
| <b>Cells transduction</b>       | Dividing & non-dividing                        | Dividing & non-dividing                                                                  | Dividing cells                   | Dividing & non-dividing       | Wide range of target cells. Dividing and non-dividing. | Wide range of target cells. Dividing and non-dividing. |
| <b>Integration</b>              | Non-integrating                                | Non-integrating                                                                          | Integrating                      | Integrating                   | Non-integrating                                        | Non-integrating                                        |
| <b>Expression</b>               | Transient                                      | Transient or stable                                                                      | Stable                           | Stable                        | Transient                                              | Transient                                              |
| <b>Immunogenicity</b>           | High                                           | Low                                                                                      | Moderate-High                    | Moderate-High                 | High                                                   | Low                                                    |
| <b>Delivery strategy</b>        | In vivo                                        | In vivo                                                                                  | Ex vivo                          | Ex vivo                       | In vivo (vaccine)                                      | In vivo & ex vivo                                      |
| <b>Manufacturing mode</b>       | Suspension                                     | Suspension                                                                               | Adherence (Mainly)               | Suspension (Mainly)           | Suspension                                             | Adherence/Suspension                                   |
| <b>Manufacturing grade</b>      | B/C                                            | B/C                                                                                      | B/C                              | B/C                           | B/A (manufacturing in aseptic conditions)              | B/C                                                    |
| <b>Cell lines</b>               | A549 and other proprietary cell lines          | HEK293                                                                                   | Producer cell lines              | HEK293 HEK293T                | Avian cell line                                        | VERO cells                                             |
| <b>Clinical applications</b>    | Oncology, vaccines against infectious diseases | Genetic disorders affecting tissues like the liver, nervous system, and skeletal muscles | Genetic disorders, oncology, HIV | Oncology (CAR-T cell therapy) | Oncology, vaccines against infectious diseases         | Oncology, conditions affecting the nervous system      |

Figure 2. Programs supported by Thermo Fisher as of Q1 2025 by viral vector type.



**900+**  
viral vector lots manufactured, including GMP clinical and commercial lots over time

**3**  
commercially approved products and several others pending

**13+**  
facilities worldwide supporting advanced therapy projects

**>10%**  
programs leverage novel vector types

Learn more at [thermofisher.com/pattheon](https://thermofisher.com/pattheon) or email us at [pharmaservices@thermofisher.com](mailto:pharmaservices@thermofisher.com)

© 2025 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. PGS 1061270